题目内容
在等差数列{an}中,a3=4,a7=8.
(1)求数列{an}的通项公式an;
(2)令bn=
,求数列{bn}的前n项和Tn;
(3)令cn=
+
,证明:c1+c2+c3+…+cn<2n+
.
(1)求数列{an}的通项公式an;
(2)令bn=
| an |
| 2n-1 |
(3)令cn=
| an |
| an+1 |
| an+1 |
| an |
| 1 |
| 2 |
分析:(1)在等差数列{an}中,由a3=4,a7=8即可求得其等差d及通项公式an;
(2)由(1)知,an=n+1,从而bn=
,Tn=2+
+
+…+
,利用错位相减法即可求得数列{bn}的前n项和Tn;
(3)整理可得cn=2+
-
,从而可证c1+c2+c3+…+cn<2n+
.
(2)由(1)知,an=n+1,从而bn=
| n+1 |
| 2n-1 |
| 3 |
| 2 |
| 4 |
| 22 |
| n+1 |
| 2n-1 |
(3)整理可得cn=2+
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
解答:解:(1)在等差数列{an}中,∵a3=4,a7=8,
∴等差d=
=1,
∴an=a3+(n-3)d=4+(n-3)×1=n+1;
(2)∵bn=
=
,
∴Tn=2+
+
+…+
,①
Tn=1+
+…+
+
,②
①-②得:
Tn=2+
+
+…+
-
=1+
-
=3-
,
∴Tn=6-
.
(3)证明:∵cn=
+
=
+
=(1-
)+(1+
)=2+
-
,
∴c1+c2+c3+…+cn=2n+[(
-
)+(
-
)+…+(
-
)]
=2n+(
-
)
<2n+
.
∴等差d=
| a7-a3 |
| 7-3 |
∴an=a3+(n-3)d=4+(n-3)×1=n+1;
(2)∵bn=
| an |
| 2n-1 |
| n+1 |
| 2n-1 |
∴Tn=2+
| 3 |
| 2 |
| 4 |
| 22 |
| n+1 |
| 2n-1 |
| 1 |
| 2 |
| 3 |
| 22 |
| n |
| 2n-1 |
| n+1 |
| 2n |
①-②得:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
| n+1 |
| 2n |
=1+
1-(
| ||
1-
|
| n+1 |
| 2n |
=3-
| n+3 |
| 2n |
∴Tn=6-
| n+3 |
| 2n-1 |
(3)证明:∵cn=
| an |
| an+1 |
| an+1 |
| an |
| n+1 |
| n+2 |
| n+2 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| n+1 |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴c1+c2+c3+…+cn=2n+[(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=2n+(
| 1 |
| 2 |
| 1 |
| n+2 |
<2n+
| 1 |
| 2 |
点评:本题考查数列的求和,着重考查错位相减法的应用,考查等差数列的通项公式与分离常数法的综合应用,属于难题.
练习册系列答案
相关题目