题目内容
已知等差数列{an}的公差d≠0,它的前n项和为Sn,若S5=70,且a2,a7,a22成等比数列.
(1)求数列{an}的通项公式;
(2)设数列{
}的前n项和为Tn,求证:
≤Tn<
.
(1)求数列{an}的通项公式;
(2)设数列{
| 1 |
| Sn |
| 1 |
| 6 |
| 3 |
| 8 |
(1)∵数列{an}是等差数列,
∴an=a1+(n-1)d,Sn=na1+
d.…(1分)
依题意,有
即
…(3分)
解得a1=6,d=4.…(5分)
∴数列{an}的通项公式为an=4n+2(n∈N*).…(6分)
(2)证明:由(1)可得Sn=2n2+4n.…(7分)
∴
=
=
=
(
-
).…(8分)
∴Tn=
+
+
+…+
+
=
[(1-
)+(
-
)+(
-
)+…+(
-
)+(
-
)]…(9分)
=
(1+
-
-
)
=
-
(
+
).…(10分)
∵Tn-
=-
(
+
)<0,
∴Tn<
.…(11分)
∵Tn+1-Tn=
(
-
)>0,所以数列{Tn}是递增数列.…(12分)
∴Tn≥T1=
.…(13分)
∴
≤Tn<
.…(14分)
∴an=a1+(n-1)d,Sn=na1+
| n(n-1) |
| 2 |
依题意,有
|
|
解得a1=6,d=4.…(5分)
∴数列{an}的通项公式为an=4n+2(n∈N*).…(6分)
(2)证明:由(1)可得Sn=2n2+4n.…(7分)
∴
| 1 |
| Sn |
| 1 |
| 2n2+4n |
| 1 |
| 2n(n+2) |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+2 |
∴Tn=
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| S3 |
| 1 |
| Sn-1 |
| 1 |
| Sn |
=
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 3 |
| 8 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
∵Tn-
| 3 |
| 8 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴Tn<
| 3 |
| 8 |
∵Tn+1-Tn=
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+3 |
∴Tn≥T1=
| 1 |
| 6 |
∴
| 1 |
| 6 |
| 3 |
| 8 |
练习册系列答案
相关题目