题目内容
11.已知(1+x)n=1+a1x+a2x2+…+anxn(n∈N*),且Sn=a1+2a2+…+nann∈N*,那么当n∈N*时,$\sum_{i=1}^n{S_i}$=(n-1)×2n +1.分析 对于等式(1+x)n=1+a1x+a2x2+…+anxn,令x=1并且两边同时取导数可得n2n-1=a1+2a2+3a3+…+nan,可得$\sum_{i=1}^n{S_i}$=1×1+2×21+3×22+…+n•2n-1,再用错位相减法求得$\sum_{i=1}^n{S_i}$的值.
解答 解:对于等式(1+x)n=1+a1x+a2x2+…+anxn,
令x=1并且两边同时取导数可得,n2n-1=a1+2a2+3a3+…+nan,
∴$\sum_{i=1}^n{S_i}$=1×1+2×21+3×22+…+n•2n-1,
∴2$\sum_{i=1}^n{S_i}$=1×2+2×22+3×23+…+n•2n,
错位相减法可得-$\sum_{i=1}^n{S_i}$=1+2+22+23+…+2n-1-n2n =$\frac{1×(1-{2}^{n})}{1-2}$-n2n=(1-n)2n-1,
化简求得$\sum_{i=1}^n{S_i}$=(n-1)×2n +1,
故答案为:(n-1)×2n +1.
点评 本题主要考查二项式定理的应用,求展开式中某项的系数,二项式系数的性质,用错位相减法进行数列求和,属于中档题.
练习册系列答案
相关题目
2.已知集合A={x|x2-2x≤0},B={x|-1<x<1},则A∩B=( )
| A. | ∅ | B. | {x|-1<x≤0} | C. | {x|0≤x<1} | D. | R |
6.某地区气象台统计,该地区下雨的概率是$\frac{4}{15}$,刮三级以上风的概率为$\frac{2}{15}$,既刮风又下雨的概率为$\frac{1}{10}$,则在下雨天里,刮风的概率为( )
| A. | $\frac{8}{225}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{8}$ | D. | $\frac{1}{10}$ |
16.设直线l1、l2的方向向量分别为$\overrightarrow a$=(2,-2,-2),$\overrightarrow b$=(2,0,4),则直线l1、l2的夹角余弦值是( )
| A. | $\frac{\sqrt{15}}{15}$ | B. | -$\frac{\sqrt{210}}{15}$ | C. | $\frac{\sqrt{210}}{15}$ | D. | -$\frac{\sqrt{15}}{15}$ |