题目内容

(2013•临沂三模)函数f(x)是定义在R上的奇函数,f(-1)=-2,对任意的x<0,有f'(x)>2,则f(x)>2x的解集为
(-1,0)∪(1,+∞)
(-1,0)∪(1,+∞)
分析:通过构造新函数,利用函数的导数判断函数的单调性,然后求解不等式的解集.
解答:解:令g(x)=f(x)-2x,所以g(-1)=f(-1)+2=0,
对任意的x<0,有f'(x)>2,
g′(x)=f′(x)-2>0,
所以对任意的x<0,有g(x)是增函数,
f(x)>2x的解集就是g(x)>g(-1)的解集,x<0时,解得-1<x<0,
因为函数是奇函数,
所以f(x)>2x的解集为:(-1,0)∪(1,+∞).
故答案为:(-1,0)∪(1,+∞).
点评:本题考查函数的导数的应用,构造法解决不等式的解集问题,是综合性较强的题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网