题目内容
ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH.
证明:如图,连结AC交BD于O,连结MO,
![]()
∵四边形ABCD是平行四边形,
∴O是AC的中点.又M是PC的中点,
∴AP∥OM.
根据直线和平面平行的判定定理,
则有PA∥平面BMD.
∵平面PAHG∩平面BMD=GH,
根据直线和平面平行的性质定理,
∴PA∥GH.
练习册系列答案
相关题目
题目内容
ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH.
证明:如图,连结AC交BD于O,连结MO,
![]()
∵四边形ABCD是平行四边形,
∴O是AC的中点.又M是PC的中点,
∴AP∥OM.
根据直线和平面平行的判定定理,
则有PA∥平面BMD.
∵平面PAHG∩平面BMD=GH,
根据直线和平面平行的性质定理,
∴PA∥GH.