题目内容

已知函数f(x)=,若存在x1,x2∈R且x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是   
【答案】分析:由题意可得,在定义域内,f(x)不是单调的.考虑x≤2时,函数的单调性,即可求得结论.
解答:解:依题意,即在定义域内,f(x)不是单调的.
分情况讨论:
①x≤2时,f(x)=-x2+ax不是单调的,对称轴为x=,则<2,∴a<4
②x>2时,若f(x)是单调的,此时a≥4,此时,当x>2时 f(x)=ax-4为单调递增,因此函数f(x)在R不单调,不满足条件.
综合得:a的取值范围是(-∞,4)
故答案为:(-∞,4)
点评:本题考查函数的单调性,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网