题目内容
已知正项数列{an}的前n项和为Sn,3an为方程x2+2x-12Sn=0的一根(N∈n).
(1)求数列{an}通项公式an;
(2)求证:当N≥2时,
+
+…+
<
.
(1)求数列{an}通项公式an;
(2)求证:当N≥2时,
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 21 |
| 22 |
分析:(1)由已知可得,9an2+6an-12Sn=0即4Sn=3an2+2an,从而可求a1,利用an=Sn-Sn-1可得an-an-1-
=0,结合等差数列的通项公式可求
(2)记Cn═
+
+…+
,利用单调性的定义可判断Cn>Cn+1即Cn<Cn-1<Cn-2<…<C2,从而可得Cn≤C2,代入可证
| 2 |
| 3 |
(2)记Cn═
| 1 |
| n2 |
| 1 |
| (n+1)2 |
| 1 |
| (2n)2 |
解答:解:(1)∵原方程x2+2x-12Sn=0有一根为3an
∴9an2+6an-12Sn=0即4Sn=3an2+2an…①…(1分)
令n=1,4a1=3a12+2a1
∴a1=
或a1=0
∵an>0
∴a1=
(2分)
当n≥2时,4Sn-1=3an-12+2an-1 …②
①-②得:4an=3an2-3an-12+2an-2an-1
即(an+an-1)(an-an-1-
)=0
∵an>0
∴an-an-1-
=0…(5分)
∴an=
+
(n-1)=
满足a1=
∴an=
…(6分)
(2)记Cn═
+
+…+
则Cn+1-Cn=
+
-
=[
-
]+[
-
]<0
∴Cn>Cn+1…(9分)
∴Cn<Cn-1<Cn-2<…<C2
即Cn≤C2=
+
+
=
…(11分)
∴
+
+…+
=
[
+
+…+
]
=
Cn≤
×
=
<
=
…(12分)
∴9an2+6an-12Sn=0即4Sn=3an2+2an…①…(1分)
令n=1,4a1=3a12+2a1
∴a1=
| 2 |
| 3 |
∵an>0
∴a1=
| 2 |
| 3 |
当n≥2时,4Sn-1=3an-12+2an-1 …②
①-②得:4an=3an2-3an-12+2an-2an-1
即(an+an-1)(an-an-1-
| 2 |
| 3 |
∵an>0
∴an-an-1-
| 2 |
| 3 |
∴an=
| 2 |
| 3 |
| 2 |
| 3 |
| 2n |
| 3 |
| 2 |
| 3 |
∴an=
| 2n |
| 3 |
(2)记Cn═
| 1 |
| n2 |
| 1 |
| (n+1)2 |
| 1 |
| (2n)2 |
则Cn+1-Cn=
| 1 |
| (2n+1)2 |
| 1 |
| (2n+2)2 |
| 1 |
| n2 |
=[
| 1 |
| (2n+1)2 |
| 1 |
| 2n2 |
| 1 |
| (2n+2)2 |
| 1 |
| 2n2 |
∴Cn>Cn+1…(9分)
∴Cn<Cn-1<Cn-2<…<C2
即Cn≤C2=
| 1 |
| 4 |
| 1 |
| 9 |
| 1 |
| 16 |
| 61 |
| 144 |
∴
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 9 |
| 4 |
| 1 |
| n2 |
| 1 |
| (n+1)2 |
| 1 |
| (2n)2 |
=
| 9 |
| 4 |
| 9 |
| 4 |
| 61 |
| 144 |
| 61 |
| 64 |
| 63 |
| 66 |
| 21 |
| 22 |
点评:本题综合考查了数列的递推公式在数列的通项求解中的应用,等差数列的通项公式的求解及数列的单调性等知识的应用,试题具有一定的综合性
练习册系列答案
相关题目