题目内容
设数列{an}的前n项和为Sn,a1=10,an+1=9Sn+10.(1)求证:{lgan}是等差数列;
(2)设Tn是数列{
| 3 |
| (lgan)(lgan+1) |
| 1 |
| 4 |
分析:(1)依题意可求得a2的值,进而求得
的值,进而看当n≥2时,根据an=Sn-Sn-1求得
=10判断出数列为等比数列,进而根据等比数列的性质求得an,进而分别表示出lgan和lgan+1,根据lgan+1-lgan=1,判断出lgan}n∈N*是等差数列.
(2)根据(1)中求得an利用裂项法求得Tn,进而根据3-
≥
,进而根据Tn>
(m2-5m)求得m的范围.判断出m的最大正整数.
| a2 |
| a1 |
| an+1 |
| an |
(2)根据(1)中求得an利用裂项法求得Tn,进而根据3-
| 3 |
| n+1 |
| 3 |
| 2 |
| 1 |
| 4 |
解答:解:(1)依题意,a2=9a1+10=100,故
=10,
当n≥2时,an=9Sn-1+10①又an+1=9Sn+10②
②-①整理得:
=10,故{an}为等比数列,
且an=a1qn-1=10n,∴lgan=n∴lgan+1-lgan=(n+1)-n=1,
即{lgan}n∈N*是等差数列.
(2)由(1)知,Tn=3(
+
++
)
=3(1-
+
-
++
-
)=3-
∴Tn≥
,
依题意有
>
(m2-5m),解得-1<m<6,
故所求最大正整数m的值为5.
| a2 |
| a1 |
当n≥2时,an=9Sn-1+10①又an+1=9Sn+10②
②-①整理得:
| an+1 |
| an |
且an=a1qn-1=10n,∴lgan=n∴lgan+1-lgan=(n+1)-n=1,
即{lgan}n∈N*是等差数列.
(2)由(1)知,Tn=3(
| 1 |
| 1•2 |
| 1 |
| 2•3 |
| 1 |
| n(n+1) |
=3(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 3 |
| n+1 |
| 3 |
| 2 |
依题意有
| 3 |
| 2 |
| 1 |
| 4 |
故所求最大正整数m的值为5.
点评:本题主要考查了等差数列和等比数列的性质.考查了学生对数列基础知识的综合把握.
练习册系列答案
相关题目