题目内容
已知数列{an}前n项和为Sn,且满足a1=
,an+2SnSn-1=0(n≥2)
(1)求证:{
}是等差数列;
(2)求数列{an}的通项公式;
(3)记数列{bn}的通项公式bn=
,Tn=b1+b2+…+bn若Tn+
<m(m∈z)恒成立,求m的最小值.
| 1 |
| 2 |
(1)求证:{
| 1 |
| Sn |
(2)求数列{an}的通项公式;
(3)记数列{bn}的通项公式bn=
| 1 |
| 2n•Sn |
| n |
| 2n-1 |
分析:(1)把已知条件变形可得
-
=2,故{
}是以2为公差、以2为首项的等差数列.
(2)由(1)可得
=2+(n-1)2=2n,Sn =
,Sn-1=
.由n≥2时,an =Sn -Sn-1 求出数列{an}的通项公式.
(3)由于 bn=
=
=n•(
)n-1,用错位相减法求出它的前n项和Tn 的值,再由 Tn+
=4-
=4-(
)n-2<m恒成立,得m≥4,由此求得m的最小值
| 1 |
| Sn |
| 1 |
| Sn-1 |
| 1 |
| Sn |
(2)由(1)可得
| 1 |
| Sn |
| 1 |
| 2n |
| 1 |
| 2(n-1) |
(3)由于 bn=
| 1 |
| 2n•Sn |
| 2n |
| 2n |
| 1 |
| 2 |
| n |
| 2n-1 |
| 2 |
| 2n-1 |
| 1 |
| 2 |
解答:解:(1)证明:∵a1=
,an+2SnSn-1=0 (n≥2),故 Sn-Sn-1 +2SnSn-1=0,∴
-
=2,
故{
}是以2为公差、以2为首项的等差数列.
(2)由(1)可得
=2+(n-1)2=2n,∴Sn =
,Sn-1=
.
∴an =Sn-Sn-1=
-
=
,(n≥2).
综上可得 an =
.
(3)∵bn=
=
=n•(
)n-1,故 Tn=1•(
)0+2•(
)1+3•(
)2+…+n•(
)n-1①
∴
Tn=1•(
)1+2•(
)2+3•(
)3+…+(n-1)•(
)n-1+n•(
)n②
①-②:
Tn=1•(
)0+(
)1+(
)2+…+(
)n-1-n(
)n=
-n•(
)n,
∴Tn=4(1-(
)n)-n•(
)n-1=4-(
)n-2-n•(
)n-1=4-
,
再由 Tn+
=4-
=4-(
)n-2<m恒成立,
∴m≥4,故m的最小值等于4.
| 1 |
| 2 |
| 1 |
| Sn |
| 1 |
| Sn-1 |
故{
| 1 |
| Sn |
(2)由(1)可得
| 1 |
| Sn |
| 1 |
| 2n |
| 1 |
| 2(n-1) |
∴an =Sn-Sn-1=
| 1 |
| 2n |
| 1 |
| 2(n-1) |
| -1 |
| 2n(n-1) |
综上可得 an =
|
(3)∵bn=
| 1 |
| 2n•Sn |
| 2n |
| 2n |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
①-②:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
1-(
| ||
|
| 1 |
| 2 |
∴Tn=4(1-(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| n+2 |
| 2n-1 |
再由 Tn+
| n |
| 2n-1 |
| 2 |
| 2n-1 |
| 1 |
| 2 |
∴m≥4,故m的最小值等于4.
点评:本题主要考查等差关系的确定,用错位相减法对数列进行求和,数列的第n项与前n项和的关系,数列与不等式的综合,函数的恒成立问题,属于难题.
练习册系列答案
相关题目