题目内容
已知数列{an}满足:a1=-
,an+1=
(n∈N+).
(1)证明数列{
}是等差数列,并求{an}的通项公式;
(2)数列{bn}满足:bn=
(n∈N+),求{bn}的前n项和Sn.
| 2 |
| 3 |
| -2an-3 |
| 3an+4 |
(1)证明数列{
| 1 |
| an+1 |
(2)数列{bn}满足:bn=
| 3n |
| an+1 |
分析:(1)由数列递推式两边加上1,再取倒数,即可证得数列{
}是等差数列,从而可求{an}的通项公式;
(2)确定数列的通项.利用错位相减法,即可求{bn}的前n项和Sn.
| 1 |
| an+1 |
(2)确定数列的通项.利用错位相减法,即可求{bn}的前n项和Sn.
解答:(1)证明:因为
=
=
=3+
所以
-
=3
所以{
}是首项为3,公差为3的等差数列,
所以
=3n,
所以an=
-1;
(2)解:由已知bn=
=3n+1n
∴Sn=32×1+3^×2+…+3n×(n-1)+3n+1×n①3Sn=33×1+34×2+…+3n+1×(n-1)+3n+2×n②
①-②得-2Sn=32+3^+…+3n+1-3n+2×n=
-3n+2×n
所以Sn=
+
3n+2=
3n+2+
.
| 1 |
| an+1+1 |
| 1 | ||
|
| 3an+4 |
| an+1 |
| 1 |
| an+1 |
所以
| 1 |
| an+1+1 |
| 1 |
| an+1 |
所以{
| 1 |
| an+1 |
所以
| 1 |
| an+1 |
所以an=
| 1 |
| 3n |
(2)解:由已知bn=
| 3n |
| an+1 |
∴Sn=32×1+3^×2+…+3n×(n-1)+3n+1×n①3Sn=33×1+34×2+…+3n+1×(n-1)+3n+2×n②
①-②得-2Sn=32+3^+…+3n+1-3n+2×n=
| 32(3n-1) |
| 3-1 |
所以Sn=
| 3n+2-9 |
| -4 |
| n |
| 2 |
| (2n-1) |
| 4 |
| 9 |
| 4 |
点评:本题考查等差数列的证明,考查数列的通项与求和,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目