题目内容

设{lgan}成等差数列,公差d=lg3,且{lgan}的前三项和为6lg3,则{an}的通项为________.

an=3n
分析:由题意可得,lgan-lgan-1=lg3,即,从而可得{an}是以3为公比的等比数列,由{lgan}的前三项和为6lg3,结合an>0可求a2=9,代入等比数列的通项可求
解答:由题意可得,lgan-lgan-1=lg3

∴{an}是以3为公比的等比数列
∵lga1+lga2+lga3=lg(a1a2a3)=6lg3

由等比数列的性质可得,
∵an>0
∴a2=9,a1=3

故答案为:
点评:本题主要考查了对数的基本运算性质的应用,等比数列的性质及通项公式的应用
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网