题目内容
设数列{an}的前n项的和为Sn,满足3Sn=4an-2n+1+2,n=1,2,3,…
(Ⅰ)求首项a1
(Ⅱ)令bn=an+2n,求证{bn}是等比数列;
(Ⅲ)设cn=
,n=1,2,3,…,数列{cn}的前n项的和为Tn,证明:Tn<1.
(Ⅰ)求首项a1
(Ⅱ)令bn=an+2n,求证{bn}是等比数列;
(Ⅲ)设cn=
| 2n+1 | 3Sn |
分析:(Ⅰ)n=1代入,即可求a1;
(Ⅱ)再写一式,两式相减,即可证明{bn}是等比数列;
(Ⅲ)写出数列的通项,利用裂项法求和,即可证得结论.
(Ⅱ)再写一式,两式相减,即可证明{bn}是等比数列;
(Ⅲ)写出数列的通项,利用裂项法求和,即可证得结论.
解答:(Ⅰ)解:当n=1时,3a1=3S1=4a1-4+2,∴a1=2 …(2分)
(Ⅱ)证明:由3Sn=4an-2n+1+2,n=1,2,3,… ①
则3Sn-1=4an-1-2n+2,n=2,3,… ②
将①和②相减得3an=3Sn-3Sn-1=4(an-an-1)-(2n+1-2n)
整理得an=4an-1+2n,…(4分)
故
=
=4(n≥2)
因而数列{bn}是首项为b1=a1+2=4,公比为4的等比数列 …(6分)
(Ⅲ)证明:由(Ⅱ)知bn=4n,
∵bn=an+2n,∴an=4n-2n,…(7分)
将an=4n-2n代入①得3Sn=4(4n-2n)-2n+1+2=2(2n+1-1)(2n-1)
∴cn=
=
-
…(12分)
∴Tn=
-
+…+
-
=1-
<1 …(14分)
(Ⅱ)证明:由3Sn=4an-2n+1+2,n=1,2,3,… ①
则3Sn-1=4an-1-2n+2,n=2,3,… ②
将①和②相减得3an=3Sn-3Sn-1=4(an-an-1)-(2n+1-2n)
整理得an=4an-1+2n,…(4分)
故
| bn |
| bn-1 |
| an+2n |
| an-1+2n-1 |
因而数列{bn}是首项为b1=a1+2=4,公比为4的等比数列 …(6分)
(Ⅲ)证明:由(Ⅱ)知bn=4n,
∵bn=an+2n,∴an=4n-2n,…(7分)
将an=4n-2n代入①得3Sn=4(4n-2n)-2n+1+2=2(2n+1-1)(2n-1)
∴cn=
| 2n+1 |
| 3Sn |
| 1 |
| 2n-1 |
| 1 |
| 2n+1-1 |
∴Tn=
| 1 |
| 21-1 |
| 1 |
| 22-1 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1-1 |
| 1 |
| 2n+1-1 |
点评:本题考查数列递推式,考查等比数列的证明,考查裂项法求数列的和,确定数列的通项是关键.
练习册系列答案
相关题目