题目内容
若关于x的不等式mx2+2x+4>0的解集为{x|-1<x<2},则实数m的值为 .
【答案】分析:由题意知,不等式mx2+2x+4>0所对应的函数y=mx2+2x+4的开口向下,并且x=-1,与x=2是其对应方程mx2+2x+4=0的根,由韦达定理便可解得m的值.
解答:解:由题意知x=-1,与x=2是方程mx2+2x+4=0的两根,由韦达定理得:
,解得m=-2.
点评:本题考查一元二次不等式的解法.
解答:解:由题意知x=-1,与x=2是方程mx2+2x+4=0的两根,由韦达定理得:
点评:本题考查一元二次不等式的解法.
练习册系列答案
相关题目