题目内容
(I)求证:BC⊥平面ACFE;
(Ⅱ)点M在线段EF上运动,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.
【答案】分析:(1)证明线面垂直可以利用面面垂直进行证明,即若两个平面垂直并且其中一个平面内的一条直线a与两个平面的交线操作时则直线a与另一个平面垂直,即可证明线面垂直.
(2)建立空间坐标系,根据坐标表示出两个平面的法向量,结合向量的有关运算求出二面角的余弦的表达式,再利用函数的有关知识求出余弦的范围.
解答:
解:(I)证明:在梯形ABCD中,
∵AB∥CD,AD=DC=CB=1,∠ABC=60°,
∴AB=2
∴AC2=AB2+BC2-2AB•BC•cos60°=3
∴AB2=AC2+BC2
∴BC⊥AC
∵平面ACFE⊥平面ABCD,平面ACFE∩平面ABCD=AC,BC?平面ABCD
∴BC⊥平面ACFE
(II)由(I)可建立分别以直线CA,CB,CF为x轴,y轴,z轴的如图所示空间直角坐标系,
令
,则
,B(0,1,0),M(λ,0,1)
∴
设
为平面MAB的一个法向量,
由
得
取x=1,则
,
∵
是平面FCB的一个法向量
∴
∵
∴当λ=0时,cosθ有最小值
,
当
时,cosθ有最大值
.
∴
.
点评:解决此类问题的关键是熟悉几何体的结构特征,以便于找到线面之间的平行、垂直关系,并且对建立坐标系也有一定的帮助,利用向量法解决空间角空间距离是最好的方法.
(2)建立空间坐标系,根据坐标表示出两个平面的法向量,结合向量的有关运算求出二面角的余弦的表达式,再利用函数的有关知识求出余弦的范围.
解答:
∵AB∥CD,AD=DC=CB=1,∠ABC=60°,
∴AB=2
∴AC2=AB2+BC2-2AB•BC•cos60°=3
∴AB2=AC2+BC2
∴BC⊥AC
∵平面ACFE⊥平面ABCD,平面ACFE∩平面ABCD=AC,BC?平面ABCD
∴BC⊥平面ACFE
(II)由(I)可建立分别以直线CA,CB,CF为x轴,y轴,z轴的如图所示空间直角坐标系,
令
∴
设
由
取x=1,则
∵
∴
∵
当
∴
点评:解决此类问题的关键是熟悉几何体的结构特征,以便于找到线面之间的平行、垂直关系,并且对建立坐标系也有一定的帮助,利用向量法解决空间角空间距离是最好的方法.
练习册系列答案
相关题目