题目内容

函数y=
x2+2x-3
的单调递减区间是(  )
A.(-∞,-3)B.(-1,+∞)C.(-∞,-1D.[-1,+∞)
令t=x2+2x-3,
对于函数y=
x2+2x-3
,有x2+2x-3≥0,解可得x≤-3或x≥1,即其定义域为{x|x≤-3或x≥1}
又由二次函数的性质,可得当x≤-3时,t=x2+2x-3为减函数,当x≥1时,t=x2+2x-3为增函数,
即当x≤-3时,函数y=
x2+2x-3
的单调递减,即函数y=
x2+2x-3
的单调递减区间为(-∞,-3],
分析选项,可得A在(-∞,-3]中,
故选A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网