题目内容
已知数列{an}满足:
+
+
+…+
=n2(n≥1,n∈N+),
(1)求a2011
(2)若bn=anan+1,Sn为数列{bn}的前b项和,存在正整数b,使得Sn>λ-
,求实数λ的取值范围.
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
(1)求a2011
(2)若bn=anan+1,Sn为数列{bn}的前b项和,存在正整数b,使得Sn>λ-
| 1 |
| 2 |
(1)
+
+
+…+
=20112
+
+
+…+
=20102
两式相减得
=20112-20102=4021?a2011=
(2)
+
+
+…+
=n2
+
+
+…+
=(n+1)2
两式相减得
=n2-(n-1)2=2n-1?an=
(n≥2)
当n=1时,a1=1也满足上式∴an=
(n≥1)
bn=anan+1=
=
(
-
)
Sn=
[(1-
)+(
-
)+…+(
-
)]=
(1-
)
存在正整数b,使得Sn>λ-
,即Sn的最大值大于λ-
而Sn=
(1-
)<
∴
>λ-
,即λ<1
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| a2011 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| a2010 |
两式相减得
| 1 |
| a2011 |
| 1 |
| 4021 |
(2)
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an+1 |
两式相减得
| 1 |
| an |
| 1 |
| 2n-1 |
当n=1时,a1=1也满足上式∴an=
| 1 |
| 2n-1 |
bn=anan+1=
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
Sn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
存在正整数b,使得Sn>λ-
| 1 |
| 2 |
| 1 |
| 2 |
而Sn=
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
∴
| 1 |
| 2 |
| 1 |
| 2 |
练习册系列答案
相关题目