题目内容
已知z是方程z-2=i(z+1)的复数解,则|z|= .
【答案】分析:先设出z的代数形式,代入所给的对应的方程进行化简,由实部和虚部对应相等求出a和b的值,再代入复数模的公式求出.
解答:解:设z=a+bi(a,b∈R),代入方程z-2=i(z+1)得,(a-2)+bi=i(a+1+bi)=-b+(a+1)i,
∴
,解得a=
,b=
,∴z=
,
∴|z|=
=
,
故答案为:
.
点评:本题考查了复数的乘法运算,以及复数相等的等价条件,利用复数模的公式进行求对应复数的模,属于基础题.
解答:解:设z=a+bi(a,b∈R),代入方程z-2=i(z+1)得,(a-2)+bi=i(a+1+bi)=-b+(a+1)i,
∴
∴|z|=
故答案为:
点评:本题考查了复数的乘法运算,以及复数相等的等价条件,利用复数模的公式进行求对应复数的模,属于基础题.
练习册系列答案
相关题目
已知z是实系数方程x2+2bx+c=0的虚根,记它在直角坐标平面上的对应点为Pz,
(1)若(b,c)在直线2x+y=0上,求证:Pz在圆C1:(x-1)2+y2=1上;
(2)给定圆C:(x-m)2+y2=r2(m、r∈R,r>0),则存在唯一的线段s满足:①若Pz在圆C上,则(b,c)在线段s上;②若(b,c)是线段s上一点(非端点),则Pz在圆C上、写出线段s的表达式,并说明理由;
(3)由(2)知线段s与圆C之间确定了一种对应关系,通过这种对应关系的研究,填写表(表中s1是(1)中圆C1的对应线段).
(1)若(b,c)在直线2x+y=0上,求证:Pz在圆C1:(x-1)2+y2=1上;
(2)给定圆C:(x-m)2+y2=r2(m、r∈R,r>0),则存在唯一的线段s满足:①若Pz在圆C上,则(b,c)在线段s上;②若(b,c)是线段s上一点(非端点),则Pz在圆C上、写出线段s的表达式,并说明理由;
(3)由(2)知线段s与圆C之间确定了一种对应关系,通过这种对应关系的研究,填写表(表中s1是(1)中圆C1的对应线段).
| 线段s与线段s1的关系 | m、r的取值或表达式 |
| s所在直线平行于s1所在直线 | |
| s所在直线平分线段s1 |