题目内容

下列四个命题:
①f(a)f(b)<0 为函数f(x)在区间(a,b)内存在零点的必要不充分条件;
②从总体中抽取的样本(x1,y1),(x2,y2),…,(xa,ya),若记
.
X
=
1
n
∑xi
.
Y
=
1
n
∑yi,则回归直线
?
y
=bx+a
必过点(
.
X
.
Y
);
③设点P是△ABC所在平面内的一点,且
BC
+
BA
=2
BP
,则P为线段AC的中点;
④若空间两点A(1,2,-1),B(2,0,m)的距离为
14
,则m=2.
其中真命题的个数为(  )
A、1个B、2个C、3个D、4个
分析:当存在零点时这两个值的乘积一定小于0,反过来不一定成立,需要加上函数是一个连续函数,回归直线
?
y
=bx+a
必过样本中心点(
.
X
.
Y
),点P是△ABC所在平面内的一点,且
BC
+
BA
=2
BP
,则P为线段AC的中点,空间两点A(1,2,-1),B(2,0,m)的距离为
14
,则m=2或m=-4.
解答:解:f(a)f(b)<0 为函数f(x)在区间(a,b)内存在零点的必要不充分条件;
即当存在零点时这两个值的乘积一定小于0,反过来不一定成立,需要加上函数是一个连续函数,故①正确,
回归直线
?
y
=bx+a
必过样本中心点(
.
X
.
Y
),故②正确,
点P是△ABC所在平面内的一点,且
BC
+
BA
=2
BP
,则P为线段AC的中点,③正确,
若空间两点A(1,2,-1),B(2,0,m)的距离为
14
,则m=2或m=-4,故④不正确.
综上可知有两个命题是正确的.
故选B.
点评:本题考查函数零点的判定定理,考查线性回归方程,考查空间两点之间的距离公式,考查向量的加法及其几何意义,是一个综合题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网