ÌâÄ¿ÄÚÈÝ
3£®·ÖÎö ÒÔOΪԵ㣬OAËùÔÚÖ±ÏßΪxÖὨÁ¢×ø±êϵ£®ÉèP£¨m£¬n£©£¬ÒÀÌâÒâ¿ÉÏÈÇó³öPµÄ×ø±ê£¬ÉèA£¨a£¬0£©£¬½ø¶ø±íʾֱÏßAB£¬OBµÄ·½³Ì£¬´Ó¶ø¿ÉÇó³öOA+OB£¬ÀûÓûù±¾²»µÈʽ£¬¼´¿ÉÈ·¶¨A£¬BµÄλÖã¬×îºóÀûÓÃÓàÏÒ¶¨Àí¼´¿ÉÇó½â
½â´ð ½â£ºÒÔOΪԵ㣬OAËùÔÚÖ±ÏßΪxÖὨÁ¢×ø±êϵ£®ÉèP£¨m£¬n£©£¬
¡ß0£¼¦È£¼$\frac{¦Ð}{2}$£¬tan¦È=3$\sqrt{3}$
¡à$cos¦È=\frac{\sqrt{7}}{14}$£¬sin$¦È=\frac{3\sqrt{21}}{14}$
Ôòm=OPsin¦È=$\sqrt{21}¡Á\frac{3\sqrt{21}}{14}$=$\frac{9}{2}$£¬n=OPcos$¦È=\sqrt{21}¡Á\frac{\sqrt{7}}{14}$=$\frac{\sqrt{3}}{2}$
ÓÉÌâÒâ¿ÉµÃ£¬OB=2xB£¬Ö±ÏßOBµÄ·½³ÌΪy=$\sqrt{3}$x¢Ù
ÉèA£¨a£¬0£©£¬ÔòÖ±ÏßABµÄ·½³Ì£º$y=\frac{\frac{\sqrt{3}}{2}}{\frac{9}{2}-a}£¨x-a£©$¢Ú
ÁªÁ¢¢Ù¢Ú¿ÉµÃ£¬${x}_{B}=\frac{a}{2£¨a-4£©}$=$\frac{2}{a-4}+\frac{1}{2}$
¡àOA+OB=a+2xB=a+$\frac{2}{a-4}+\frac{1}{2}$=a-4+4+$\frac{4}{a-4}+1$=a-4+$\frac{4}{a-4}$+5¡Ý2$\sqrt{£¨a-4£©•\frac{4}{a-4}}+5$=9
µ±ÇÒ½öµ±¼´a=6ʱȡµÈºÅ£¬´ËʱOA=6£¬OB=3£¬
¡÷OABÖУ¬ÓÉÓàÏÒ¶¨Àí¿ÉµÃ£¬AB=$\sqrt{O{A}^{2}+O{B}^{2}-2OA•OBcos60¡ã}$
=$\sqrt{36+9-2¡Á6¡Á3¡Á\frac{1}{2}}$=$3\sqrt{3}$
¹Ê´ð°¸Îª£º$3\sqrt{3}$
µãÆÀ ±¾Ì⿼²éÀûÓÃÊýѧ֪ʶ½â¾öʵ¼ÊÎÊÌ⣬¿¼²é»ù±¾²»µÈʽµÄÔËÓã¬ÊôÓÚÖеµÌâ
| A£® | i | B£® | -i | C£® | 1 | D£® | -1 |
| A£® | -$\frac{\sqrt{3}}{2}$ | B£® | $\frac{\sqrt{3}}{2}$ | C£® | -$\frac{1}{2}$ | D£® | $\frac{1}{2}$ |
| A£® | 24 | B£® | 16 | C£® | 12 | D£® | 8 |