题目内容
【题目】已知椭圆
的左、右焦点分别为
,离心率
,且椭圆的短轴长为2.
(1)球椭圆的标准方程;
(2)已知直线
过右焦点
,且它们的斜率乘积为
,设
分别与椭圆交于点
和
.
①求
的值;
②设
的中点
,
的中点为,求
面积的最大值.
【答案】(1)
;(2)①
;②
.
【解析】
;
(1)由椭圆短轴长为2,得b=1,再由离心率结合
计算即可得到椭圆的方程;(2)① 由直线
过右焦点
,设出直线AB方程,将AB方程与椭圆方程联立,写出韦达定理计算弦长AB, 由两直线斜率乘积为
,将弦长AB中的斜率变为
可得弦长CD,相加即得结果;②由中点坐标公式可得点M,N坐标,观察坐标知MN中点T在x轴上,所以
,整理后利用基本不等式即可得面积的最值.
(1) 由题设知:
解得![]()
故椭圆的标准方程为
.
(2)①设
的直线方程为
,
联立
消元
并整理得
,
所以
,
,
于是
,
同理
,
于是
.
②由①知
,
,
,
,
所以
,
,
所以
的中点为
,
于是
,
当且仅当
,即
时取等号,
所以
面积的最大值为
.
练习册系列答案
相关题目