题目内容

已知数列{an}满足a1=2,an+1=
1+an
1-an
,则a1.a2.a3…a2009.a2010的值为(  )
分析:通过计算前几项得出其周期即可.
解答:解:∵a1=2,an+1=
1+an
1-an
,∴a2=
1+2
1-2
=-3

同理a3=-
1
2
a4=
1
3
,a5=2,…,
∴an+4=an
而a1a2a3a4=2×(-3)×(-
1
2
1
3
=1.
∴a1.a2.a3…a2009.a2010的值=(a1a2a3a4)502×4×a1a2=1×2×(-3)=-6.
故选A.
点评:正确找出周期性是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网