题目内容
【题目】已知函数
在
处取得极值
.
(1)求函数
的解析式;
(2)设函数
,若对任意的
,总存在唯一的
(
为自然对数的底数)使得
,求实数
的取值范围.
【答案】解: (1)
…………………………2分
由
在
处取到极值2,故
,
即
,![]()
解得
,经检验,此时
在
处取得极值.故
……5分
(2)由(1)知
,故
在
上单调递增,在![]()
上单调递减,由
,故
的值域为
…………………………7分
依题意
,记![]()
![]()
![]()
![]()
(ⅰ)当
时,![]()
![]()
,
在
上单调递减,
依题意由
,得
,……………………………………………………8分
(ⅱ)当
时, ![]()
当
时, ![]()
,当
时, ![]()
![]()
依题意得:
或
,解得
,…………………………10分
(ⅲ)当![]()
时, ![]()
,此时![]()
,
在
上单调递增依题意得
即
此不等式组无解 ……………………………………11分.
综上,所求
取值范围为
………………………………………………14分
【解析】略
练习册系列答案
相关题目
【题目】某种产品的广告费支出
与销售额
(单位:万元)之间有如下对应数据:
|
|
|
|
|
|
|
|
|
|
|
|
(1)求回归直线方程;
(2)试预测广告费支出为
万元时,销售额多大?
(3)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过
的概率.(参考数据:
.
【题目】一鲜花店一个月(30天)某种鲜花的日销售量与销售天数统计如下:
日销售量(枝) | 0~49 | 50~99 | 100~149 | 150~199 | 200~250 |
销售天数(天) | 3天 | 3天 | 15天 | 6天 | 3天 |
将日销售量落入各组区间的频率视为概率.
(1)试求这30天中日销售量低于100枝的概率;
(2)若此花店在日销售量低于100枝的6天中选择2天作促销活动,求这2天的日销售量都低于50枝的概率(不需要枚举基本事件).