题目内容
已知以椭圆C的两个焦点及短轴的两个端点为顶点的四边形中,有一个内角为60°,则椭圆C的离心率为分析:由题意有可得tan30°=
=
,或tan30°=
=
,当
=
时,由e=
=
,求出e的值,当
=
时,由 e=
=
,求得e的值.
| ||
| 3 |
| b |
| c |
| ||
| 3 |
| c |
| b |
| ||
| 3 |
| b |
| c |
| c |
| a |
| 3 |
| ||
| a |
| ||
| 3 |
| c |
| b |
| c |
| a |
| ||
| 3 |
| ||
| a |
解答:解:由题意有可得 tan30°=
=
或 tan30°=
=
,
当
=
时,e=
=
=
,∴e2=3-3e2,解得e=
.
当
=
时,e=
=
=
,∴e2=
-e2,解得e=
.
综上,e=
,或 e=
.
| ||
| 3 |
| b |
| c |
| ||
| 3 |
| c |
| b |
当
| ||
| 3 |
| b |
| c |
| c |
| a |
| ||
| a |
| 3 |
| ||
| a |
| ||
| 2 |
当
| ||
| 3 |
| c |
| b |
| c |
| a |
| ||
| 3a |
| ||
| 3 |
| ||
| a |
| 1 |
| 3 |
| 1 |
| 2 |
综上,e=
| ||
| 2 |
| 1 |
| 2 |
点评:本题考查椭圆的标准方程,以及简单性质的应用,根据题意得到
=
,或
=
,是解题的关键.
| ||
| 3 |
| b |
| c |
| ||
| 3 |
| c |
| b |
练习册系列答案
相关题目