题目内容
20.分析 根据三个小球和碗的相切关系,作出对应的正视图和俯视图,建立球心和半径之间的关系即可得到碗的半径.
解答 解:![]()
解:分别作出空间几何体的正视图和俯视图如图:
则俯视图中,球心O(也是圆心O)是三个小球与半圆面的三个切点的中心,
∵小球的半径为5cm,
∴三个球心之间的长度为10cm,
即OA=$\frac{2}{3}$×$\frac{\sqrt{3}}{2}$×10=$\frac{10\sqrt{3}}{3}$cm.,
在正视图中,球心B,球心O(同时也是圆心O),
和切点A构成直角三角形,
则OA2+AB2=OB2,
其中OB=R-5,AB=5,
∴($\frac{10\sqrt{3}}{3}$)2+52=(R-5)2
即$\frac{175}{3}$=(R-5)2
∴R-5=$\frac{5\sqrt{21}}{3}$,
R=5+$\frac{5\sqrt{21}}{3}$cm.
故答案为:5$+\frac{5\sqrt{21}}{3}$.
点评 本题主要考查了球的相切问题 的计算,根据条件作出正视图和俯视图,确定球半径之间的关系是解决本题的关键,综合性较强,难度较大
练习册系列答案
相关题目
11.已知Sn是等差数列{an}的前n项和,且a1=-2015,$\frac{{S}_{2014}}{2014}-\frac{{S}_{2013}}{2013}$=1,则S2015的值为( )
| A. | -2014 | B. | 2015 | C. | 2014 | D. | -2015 |
15.已知集合P={1,m},Q={1,3,5},则“m=5”是“P⊆Q”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
5.某医疗研究所为了检验某种血清能起到预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,利用2×2列联表计算得k2≈3.918.
附表:
则作出“这种血清能起到预防感冒的作用”出错的可能性不超过( )
附表:
| P(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
| A. | 95% | B. | 5% | C. | 97.5% | D. | 2.5% |
12.某省气象部门为了有效缓解近期的持续高温天气,拟进行人工降雨,为了达到理想效果,首先在电脑上进行人工降雨模拟试验,准备用A,B,C三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其试验数据统计如下:
假设甲、乙、丙三地实施的人工降雨彼此互不影响.
(Ⅰ)求甲、乙两地恰为中雨且丙为小雨的概率;
(Ⅱ)考虑到旱情和水土流失,如果甲恰需中雨即能达到理想状态,乙必须是大雨才能达到理想状态,丙是小雨或中雨就能达到理想状态,求降雨量达到理想状态的地方个数的概率分布与期望.
| 方式 | 实施地点 | 大雨 | 中雨 | 小雨 | 模拟试验总次数 |
| A | 甲 | 4次 | 6次 | 2次 | 12次 |
| B | 乙 | 3次 | 6次 | 3次 | 12次 |
| C | 丙 | 2次 | 2次 | 8次 | 12次 |
(Ⅰ)求甲、乙两地恰为中雨且丙为小雨的概率;
(Ⅱ)考虑到旱情和水土流失,如果甲恰需中雨即能达到理想状态,乙必须是大雨才能达到理想状态,丙是小雨或中雨就能达到理想状态,求降雨量达到理想状态的地方个数的概率分布与期望.
9.已知变量x,y满足的不等式组$\left\{\begin{array}{l}{2x-y-2≤0}\\{x-2y+2≥0}\\{x+y-2≥0}\end{array}\right.$表示的区域为D,B,C为区域D内的任意两点,设$\overrightarrow{OB}$,$\overrightarrow{OC}$的夹角为θ,则tanθ的最大值是( )
| A. | $\frac{4}{3}$ | B. | $\frac{3}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{5}$ |