题目内容
(2013•东城区二模)在数列{an}中,若对任意的n∈N*,都有
-
=t(t为常数),则称数列{an}为比等差数列,t称为比公差.现给出以下命题:
①等比数列一定是比等差数列,等差数列不一定是比等差数列;
②若数列{an}满足an=
,则数列{an}是比等差数列,且比公差t=
;
③若数列{cn}满足c1=1,c2=1,cn=cn-1+cn-2(n≥3),则该数列不是比等差数列;
④若{an}是等差数列,{bn}是等比数列,则数列{anbn}是比等差数列.
其中所有真命题的序号是
| an+2 |
| an+1 |
| an+1 |
| an |
①等比数列一定是比等差数列,等差数列不一定是比等差数列;
②若数列{an}满足an=
| 2n-1 |
| n2 |
| 1 |
| 2 |
③若数列{cn}满足c1=1,c2=1,cn=cn-1+cn-2(n≥3),则该数列不是比等差数列;
④若{an}是等差数列,{bn}是等比数列,则数列{anbn}是比等差数列.
其中所有真命题的序号是
①③
①③
.分析:①由等比数列的特点,代入可知满足新定义,若等差数列的公差d=0时满足题意,当d≠0时,不是比等差数列,可知正确;②代入新定义验证可知,不满足;③由递推公式计算数列的前4项,可得
-
≠
-
,故该数列不是比等差数列;④可举{an}为0列,则数列{anbn}为0列,显然不满足定义.
| c3 |
| c2 |
| c2 |
| c1 |
| c4 |
| c3 |
| c3 |
| c2 |
解答:解:①若数列{an}为等比数列,且公比为q,则
-
=q-q=0,为常数,故等比数列一定是比等差数列,
若数列{an}为等差数列,且公差为d,当d=0时,
-
=1-1=0,为常数,是比等差数列,
当d≠0时,
-
不为常数,故不是比等差数列,故等差数列不一定是比等差数列,故正确;
②若数列{an}满足an=
,则
-
=
-
不为常数,故数列{an}不是比等差数列,故错误;
③若数列{cn}满足c1=1,c2=1,cn=cn-1+cn-2(n≥3),可得c3=2,c4=3,故
-
=1,
-
=-
,
显然
-
≠
-
,故该数列不是比等差数列,故正确;
④若{an}是等差数列,{bn}是等比数列,可举{an}为0列,则数列{anbn}为0列,显然不满足定义,即数列{anbn}不是比等差数列,故错误.
故答案为:①③
| an+2 |
| an+1 |
| an+1 |
| an |
若数列{an}为等差数列,且公差为d,当d=0时,
| an+2 |
| an+1 |
| an+1 |
| an |
当d≠0时,
| an+2 |
| an+1 |
| an+1 |
| an |
②若数列{an}满足an=
| 2n-1 |
| n2 |
| an+2 |
| an+1 |
| an+1 |
| an |
| 2(n+1)2 |
| (n+2)2 |
| 2n2 |
| (n+1)2 |
③若数列{cn}满足c1=1,c2=1,cn=cn-1+cn-2(n≥3),可得c3=2,c4=3,故
| c3 |
| c2 |
| c2 |
| c1 |
| c4 |
| c3 |
| c3 |
| c2 |
| 1 |
| 2 |
显然
| c3 |
| c2 |
| c2 |
| c1 |
| c4 |
| c3 |
| c3 |
| c2 |
④若{an}是等差数列,{bn}是等比数列,可举{an}为0列,则数列{anbn}为0列,显然不满足定义,即数列{anbn}不是比等差数列,故错误.
故答案为:①③
点评:本题考查命题真假的判断与应用,涉及等差数列和等比数列以及新定义,属基础题.
练习册系列答案
相关题目