题目内容
(本小题满分14分)如图,已知三角形PAQ顶点P(-3,0),点A在y轴上,点Q在x轴正半轴上,
·
=0,
=2
.(1)当点A在y轴上移动时,求动点M的轨迹E的方程;
(2)设直线l:y=k(x+1)与轨迹E交于B、C两点,点D(1,0),若∠BDC为钝角,求k的取值范围.
(Ⅰ) y
=4x (x≠0) (Ⅱ) -
<k<
.(k≠0)
解析:
:(1)设
=(x,y),
=(0,a),
=(b,0)(b>0)则
=(3,a),
=(b,-a),又
·
=0,
∴a
=3b ①又∵
=(x-b,y),
=(b,-a),
=2
,∴
②由①②得y
=4x (x≠0)
(2)设
=(x
,y
),
=(x
,y
),
=(x
-1,y
)
=(x
-1,y
),
·
=|
|·|
|cos∠BDC,
∵∠BDC为钝角,∴cos∠BDC=
<0,
∴
·
<0,∴x
x
-(x
+x
)+1+y
y
<0 ③
由
消去y得:k
x
+(2k
-4)x+k
=0 (k≠0),则x
+x
=
,x
x
=1 ④
y
y
=k
(x
+1)(x
+1)=k2[x
x
+(x
+x
)+1] ⑤
④⑤代入③,得k
<![]()
-
<k<
.(k≠0),满足Δ>0.
练习册系列答案
相关题目