题目内容
已知数列{an}的前n项和为Sn=n2+n.
(I)求数列{an}的通项公式;
(II)若bn=(
)an+n,求数列{bn}的前n项和Tn.
(I)求数列{an}的通项公式;
(II)若bn=(
| 1 |
| 2 |
(I)当n≥2时,an=Sn-Sn-1=n2+n-(n-1)2-(n-1)=2n,
当n=1时,a1=2也适合上式,
∴an=2n.
(II)由(I)知,bn=(
)an+n=(
)n+n.
∴Tn=
+(
)2++(
)n+(1+2+…+n)=
+
=
[1-(
)n]+
.
当n=1时,a1=2也适合上式,
∴an=2n.
(II)由(I)知,bn=(
| 1 |
| 2 |
| 1 |
| 4 |
∴Tn=
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| ||||
1-
|
| n(n+1) |
| 2 |
=
| 1 |
| 3 |
| 1 |
| 4 |
| n(n+1) |
| 2 |
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |