题目内容

16.计算定积分${∫}_{0}^{2}$($\sqrt{2x-{x}^{2}}$+x)dx(  )
A.$\frac{π}{2}$+4B.π+2C.$\frac{π}{2}$+2D.π+4

分析 根据积分的几何意义以及常见函数的积分公式进行计算即可.

解答 解:${∫}_{0}^{2}$($\sqrt{2x-{x}^{2}}$+x)dx=${∫}_{0}^{2}$$\sqrt{2x-{x}^{2}}$dx+${∫}_{0}^{2}$xdx
设y=$\sqrt{2x-{x}^{2}}$,则y2=2x-x2
即(x-1)2+y2=1,(0≤x≤2,y≥0),
则y=$\sqrt{2x-{x}^{2}}$,表示圆心为(1,0),半径为1的圆的上半部分,对应的面积S=$\frac{1}{2}×π×{1}^{2}$=$\frac{π}{2}$,
即${∫}_{0}^{2}$$\sqrt{2x-{x}^{2}}$dx=$\frac{π}{2}$,${∫}_{0}^{2}$xdx=$\frac{1}{2}{x}^{2}$|${\;}_{0}^{2}$=$\frac{1}{2}×{2}^{2}=\frac{1}{2}×4=2$,
则${∫}_{0}^{2}$($\sqrt{2x-{x}^{2}}$+x)dx=${∫}_{0}^{2}$$\sqrt{2x-{x}^{2}}$dx+${∫}_{0}^{2}$xdx=$\frac{π}{2}$+2,
故选:C

点评 本题主要考查积分的计算,根据积分的几何意义以及函数的积分公式是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网