题目内容

已知椭圆C经过点M,其左顶点为N,两个焦点为(-1,0),(1,0),平行于MN的直线l交椭圆于A,B两个不同的点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求证:直线MA,MB与x轴始终围成一个等腰三角形.

【答案】分析:(Ⅰ)由题意设出椭圆方程,把点M的坐标代入椭圆方程,结合隐含条件a2=b2+c2可求解a2,b2,则椭圆的方程可求;
(Ⅱ)由椭圆方程求出顶点N的坐标,求出MN的斜率,设出直线l的斜截式方程,和椭圆联立后利用根与系数的关系求出A,B两点的横坐标的和与积,由两点式写出MA和MB的斜率,作和后化为含有直线l的截距的代数式,整理得到结果为0,所以结论得证.
解答:(Ⅰ)解:设椭圆的方程为(a>b>0),因为过点
所以 ①
又c=1,所以a2=b2+c2=b2+1 ②
由①②可得a2=4,b2=3.
故椭圆C的方程为
(Ⅱ)证明:由(Ⅰ)知,,所以
故设直线l:
联立,得x2+mx+m2-3=0.


=
==1-1=0.
故直线MA,MB与x轴始终围成一个等腰三角形.
点评:本题考查了椭圆的标准方程,考查了直线与圆锥曲线的关系,考查了数学转化思想方法和学生的计算能力,属难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网