题目内容
【题目】已知函数f(x)=x2﹣2x,g(x)=ax+2(a>0),且对任意的x1∈[﹣1,2],都存在x2∈[﹣1,2],使f(x2)=g(x1),则实数a的取值范围是( )
A.[3,+∞)
B.(0,3]
C.[
,3]
D.(0,
]
【答案】D
【解析】解:∵函数f(x)=x2﹣2x的图象是开口向上的抛物线,且关于直线x=1对称
∴x1∈[﹣1,2]时,f(x)的最小值为f(1)=﹣1,最大值为f(﹣1)=3,
可得f(x1)值域为[﹣1,3]
又∵g(x)=ax+2(a>0),x2∈[﹣1,2],
∴g(x)为单调增函数,g(x2)值域为[g(﹣1),g(2)]
即g(x2)∈[2﹣a,2a+2]
∵对任意的x1∈[﹣1,2]都存在x2∈[﹣1,2],使得g(x1)=f(x2)
∴
,
∴0<a≤
,
故选:D.
【考点精析】解答此题的关键在于理解二次函数的性质的相关知识,掌握当
时,抛物线开口向上,函数在
上递减,在
上递增;当
时,抛物线开口向下,函数在
上递增,在
上递减.
练习册系列答案
相关题目