题目内容
数列{an}满足下列条件:a1=1,且对于任意的正整数n,恒有2an=2nan-1,则a100的值为( )
分析:由条件可得
=2n-1,可得
=2,
=22,
=23,…
=299,累乘求得a100的值.
| an |
| an-1 |
| a2 |
| a1 |
| a3 |
| a2 |
| a4 |
| a3 |
| a100 |
| a99 |
解答:解:由题意可得a1=1,2an=2nan-1,∴
=2n-1,
∴
=2,
=22,
=23,…
=299.
累乘可得a100=24950 ,
故选D.
| an |
| an-1 |
∴
| a2 |
| a1 |
| a3 |
| a2 |
| a4 |
| a3 |
| a100 |
| a99 |
累乘可得a100=24950 ,
故选D.
点评:本题主要考查等比关系的确定,根据数列的递推关系求通项,属于中档题.
练习册系列答案
相关题目
数列{an}满足下列条件:a1=1,且对于任意的正整数n,恒有a2n=an+n,a512=( )
| A、128 | B、256 | C、512 | D、1024 |