题目内容
已知数列{an}的前n项和为Sn,a1=1,a2=2,且点(Sn,Sn+1)在直线y=kx+1上
(Ⅰ)求k的值;
(Ⅱ)求证:{an}是等比数列;
(Ⅲ)记Tn为数列{Sn}的前n项和,求T10的值.
(Ⅰ)求k的值;
(Ⅱ)求证:{an}是等比数列;
(Ⅲ)记Tn为数列{Sn}的前n项和,求T10的值.
(1)Sn+1=k•Sn+1,令n=1有,S2=k•S1+1,∴a1+a2=k•a1+1.代入a1=1,a2=2有k=2.
(2)∵Sn+1=2Sn+1,∴Sn=2Sn-1+1(n≥2).
两式相减有,an+1=2an,即,
=2.且
=2符合.
∴{an}为公比为2的等比数列.
(3)Sn=
=2n-1
∴T10=(2+22+23++210)-10=
-10=2036.
(2)∵Sn+1=2Sn+1,∴Sn=2Sn-1+1(n≥2).
两式相减有,an+1=2an,即,
| an+1 |
| an |
| a2 |
| a1 |
∴{an}为公比为2的等比数列.
(3)Sn=
| 1-2n |
| 1-2 |
∴T10=(2+22+23++210)-10=
| 2(1-210) |
| 1-2 |
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |