题目内容

设F(x)=f(x)g(x)是R上的奇函数,当x<0时,f(x)g(x)+f(x)g(x)>0,且g(2)=0,则不等式F(x)<0的解集是


  1. A.
    (-2,0)∪(2,+∞)
  2. B.
    (-2,0)∪(0,2)
  3. C.
    (-∞,-2)∪(2,+∞)
  4. D.
    (-∞,-2)∪(0,2)
D
分析:先根据f′(x)g(x)+f(x)g′(x)>0可确定[f(x)g(x)]'>0,进而可得到f(x)g(x)在x<0时递增,结合函数F(x)的奇偶性可确定F(x)在x>0时也是增函数,最后根据g(-2)=0可求得答案
解答:因 f′(x)g(x)+f(x)g′(x)>0,
即[f(x)g(x)]'>0
故F(x)在x<0时递增,
又∵F(x)=f(x)g(x)是R上的奇函数,
∴F(x)的图象关于原点对称,
所以F(x)在x>0时也是增函数.
∵f(2)g(2)=0,
∴f(-2)g(-2)=0.
即F(-2)=0且F(2)=0
所以F(x)>0的解集为:x<-2或0<x<2.
故选D.
点评:本题考查了函数的奇偶性的应用,以及导数的运算,不等式的解法等,根据导数的正负可以确定函数的单调性,利用数形结合的思想进行解题.属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网