题目内容
已知正项数列{an}满足
=P(0<P<1),且
=
,
(1)求数列的通项an;
(2)求证:
+
+
+…+
<1.
| a | 1 |
| a | n+1 |
| ||
|
(1)求数列的通项an;
(2)求证:
| ||
| 2 |
| ||
| 3 |
| ||
| 4 |
| ||
| n+1 |
由已知an+1=
可得,
=
=
+1,
=
即
-
=1
数列{
}是以
为首项,以1为公差的等差数列
∴
=
+(n-1)×1=n-1+
即an=
∵0<P<1∴
-1>0
∴
=
<
=
-
+
+…+
<1-
+
-
+…+
-
=1-
=
<1即证
| an |
| an+1 |
| 1 |
| an+1 |
| an+1 |
| an |
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| p |
即
| 1 |
| an+1 |
| 1 |
| an |
数列{
| 1 |
| an |
| 1 |
| p |
∴
| 1 |
| an |
| 1 |
| p |
| 1 |
| p |
| 1 | ||
n-1+
|
∵0<P<1∴
| 1 |
| p |
∴
| an |
| n+1 |
| 1 | ||
(n+1)(n-1+
|
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| a1 |
| 2 |
| a2 |
| 3 |
| an |
| n+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| n |
| n+1 |
练习册系列答案
相关题目