题目内容

求函数y=sin4x+2
3
sinxcosx-cos4x
的最小正周期、最小值和单调递增区间.
y=sin4x+2
3
sinxcosx-cos4x

=sin4x-cos4x+2
3
sinxcosx
=(sin2x+cos2x)(sin2x-cos2x)+2
3
sinxcosx
=-cos2x+
3
sin2x
=2(sin2xcos
π
6
-cos2xsin
π
6

=2sin(2x-
π
6

∴T=
2
=π,ymin=-2,
又∵-
π
2
+2kπ≤2x-
π
6
π
2
+2kπ,
∴-
π
3
+2kπ≤2x≤
3
+2kπ,即-
π
6
+kπ≤x≤
π
3
+kπ,
所以y=2sin(2x-
π
6
)的单调增区间是[-
π
6
+kπ,
π
3
+kπ]
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网