题目内容
求函数y=sin4x+2
sinxcosx-cos4x的最小正周期、最小值和单调递增区间.
| 3 |
y=sin4x+2
sinxcosx-cos4x
=sin4x-cos4x+2
sinxcosx
=(sin2x+cos2x)(sin2x-cos2x)+2
sinxcosx
=-cos2x+
sin2x
=2(sin2xcos
-cos2xsin
)
=2sin(2x-
)
∴T=
=π,ymin=-2,
又∵-
+2kπ≤2x-
≤
+2kπ,
∴-
+2kπ≤2x≤
+2kπ,即-
+kπ≤x≤
+kπ,
所以y=2sin(2x-
)的单调增区间是[-
+kπ,
+kπ]
| 3 |
=sin4x-cos4x+2
| 3 |
=(sin2x+cos2x)(sin2x-cos2x)+2
| 3 |
=-cos2x+
| 3 |
=2(sin2xcos
| π |
| 6 |
| π |
| 6 |
=2sin(2x-
| π |
| 6 |
∴T=
| 2π |
| 2 |
又∵-
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
∴-
| π |
| 3 |
| 2π |
| 3 |
| π |
| 6 |
| π |
| 3 |
所以y=2sin(2x-
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
练习册系列答案
相关题目