题目内容
已知数列{an} 是通项an和公差都不为零的等差数列,设Sn=
+
+…+
,则Sn=( )
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |
分析:由等差数列的通项公式可得an+1-an=d,可得
=
(
-
),从而可得Sn=
+
+…+
,=
(
-
+
-
+…+
-
)
| 1 |
| anan+1 |
| 1 |
| d |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |
| 1 |
| d |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 1 |
| an+1 |
解答:解:∵
=
(
-
)
∴Sn=
+
+…+
,
=
(
-
+
-
+…+
-
)
=
(
-
)
=
×
=
=
故选:A
| 1 |
| anan+1 |
| 1 |
| d |
| 1 |
| an |
| 1 |
| an+1 |
∴Sn=
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |
=
| 1 |
| d |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 1 |
| an+1 |
=
| 1 |
| d |
| 1 |
| a1 |
| 1 |
| an+1 |
=
| 1 |
| d |
| an+1-a1 |
| a1an+1 |
=
| nd |
| da1an+1 |
=
| n |
| a1an+1 |
故选:A
点评:本题主要考查了等差数列的通项公式的应用,数列求和的裂项求和方法的应用,要注意本题裂项时要乘以
是解题中容易漏掉的,这也是本题的解题关键与易错点.
| 1 |
| d |
练习册系列答案
相关题目