题目内容
已知x>0,y>0,lg2x+lg8y=lg2,则
+
的最小值是______.
| 1 |
| x |
| 1 |
| 3y |
lg2x+lg8y=lg2x+lg23y=(x+3y)lg2,
又由lg2x+lg8y=lg2,
则x+3y=1,
进而由基本不等式的性质可得,
+
=(x+3y)(
+
)=2+
+
≥2+2=4,
当且仅当x=3y时取等号,
故答案为:4.
又由lg2x+lg8y=lg2,
则x+3y=1,
进而由基本不等式的性质可得,
| 1 |
| x |
| 1 |
| 3y |
| 1 |
| x |
| 1 |
| 3y |
| 3y |
| x |
| x |
| 3y |
当且仅当x=3y时取等号,
故答案为:4.
练习册系列答案
相关题目
(2007
宁夏,7)已知x>0,y>0,x,a,b,y成等差数列,x,c,d,y成等比数列,则[
]|
A .0 |
B .1 |
C .2 |
D .4 |