题目内容
已知的三个顶点在抛物线C:上,F为抛物线C的焦点,点M为AB的中点,;
(1)若,求点M的坐标;
(2)求面积的最大值。
如图,三棱柱中,.
(1)求证:;
(2)若,问为何值时,三棱柱体积最
大,并求此最大值。
已知函数.
若,且,求的值;
求函数的最小正周期及单调递增区间.
如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练,已知点A到墙面的距离为AB,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小(仰角为直线AP与平面ABC所成角)。若,,则的最大值( )
A. B. C. D.
设直线与双曲线的两条渐近线分别交于点A、B,若点满足,则该双曲线的离心率是______________。
在区间上随机选取一个数,则的概率为( )
在平面直角坐标系中,曲线(为参数)的普通方程为___________.
在△ABC中,,,则( )
A. B.1 C. D.
阅读右图所示的程序框图,运行相应的程序,输出的结果是( )
A.3 B.11 C.100 D.123