题目内容
数列{an}的通项an=n2(cos2
-sin2
),其前n项和为S3n.
(1)求S3n.
(2)bn=
,求数列{bn}的前n项和Tn.
| nπ |
| 3 |
| nπ |
| 3 |
(1)求S3n.
(2)bn=
| S3n |
| n•4n |
分析:(1)由cos2
-sin2
=cos
及等差数列的求和公式可求得S3k,从而可得S3n.
(2)利用错位相减法可求得Tn;
| nπ |
| 3 |
| nπ |
| 3 |
| 2nπ |
| 3 |
(2)利用错位相减法可求得Tn;
解答:解:(1)由于cos2
-sin2
=cos
,
故S3k=(a1+a2+a3)+(a4+a5+a6)+…+(a3k-2+a3k-1+a3k)
=(-
+32)+(-
+62)+…+[-
+(3k)2]
=
+
+…+
=
,
∴S3n=
;
(2)bn=
=
,
则Tn=
(
+
+…+
),4Tn=
(13+
+…+
),
两式相减得,3Tn=
(13+
+…+
-
)=
(13+
-
)=8-
-
,
故Tn=
-
-
.
| nπ |
| 3 |
| nπ |
| 3 |
| 2nπ |
| 3 |
故S3k=(a1+a2+a3)+(a4+a5+a6)+…+(a3k-2+a3k-1+a3k)
=(-
| 12+22 |
| 2 |
| 42+52 |
| 2 |
| (3k-2)2+(3k-1)2 |
| 2 |
=
| 13 |
| 2 |
| 31 |
| 2 |
| 18k-5 |
| 2 |
| k(9k+4) |
| 2 |
∴S3n=
| n(9n+4) |
| 2 |
(2)bn=
| S3n |
| n•4n |
| 9n+4 |
| 2•4n |
则Tn=
| 1 |
| 2 |
| 13 |
| 4 |
| 22 |
| 42 |
| 9n+4 |
| 4n |
| 1 |
| 2 |
| 22 |
| 4 |
| 9n+4 |
| 4n-1 |
两式相减得,3Tn=
| 1 |
| 2 |
| 9 |
| 4 |
| 9 |
| 4n-1 |
| 9n+4 |
| 4n |
| 1 |
| 2 |
| ||||
1-
|
| 9n+4 |
| 4n |
| 1 |
| 22n-3 |
| 9n |
| 22n+1 |
故Tn=
| 8 |
| 3 |
| 1 |
| 3•22n-3 |
| 3n |
| 22n+1 |
点评:本题考查数列求和,错位相减法对数列求和是高考考查的重点内容,要熟练掌握.
练习册系列答案
相关题目
设Sn是等差数列{an}前n项和,若a4=9,S3=15,则数列{an}的通项为( )
| A、2n-3 | B、2n-1 | C、2n+1 | D、2n+3 |