题目内容
已知数列{an}满足:{
}是公差为1的等差数列,且an+1=
an+1.
(1)求数列{an}的通项公式an;
(2)求证:
+
+…+
<2.
| an |
| n |
| n+2 |
| n |
(1)求数列{an}的通项公式an;
(2)求证:
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
分析:(1)由于 {
}是公差为1的等差数列,可得
-
=1,又an+1=
an+1,化简可求数列{an}的通项公式an;
(2)由an=n2,知
+
+…+
<2等价于
+
+…+
<2,用数学归纳法证明.
| an |
| n |
| an+1 |
| n+1 |
| an |
| n |
| n+2 |
| n |
(2)由an=n2,知
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 |
| 2 |
| 1 | ||
3
|
| 1 | ||
(n+1)
|
解答:解:(1)∵{
}是公差为1的等差数列,
∴
-
=1,
∵an+1=
an+1,
∴an=n2;
(2)∵an=n2,
∴
=
,
用数学归纳法证明
+
+…+
<2.
①n=1时,
=
<2,成立;
②假设n=k时,成立,即
+
+…+
<2,
当n=k+1时,
+
+…+
+
<2也成立.
由①②知,
+
+…+
<2.
| an |
| n |
∴
| an+1 |
| n+1 |
| an |
| n |
∵an+1=
| n+2 |
| n |
∴an=n2;
(2)∵an=n2,
∴
| 1 | ||
|
| 1 | ||
(n+1)
|
用数学归纳法证明
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
①n=1时,
| 1 | ||
|
| 1 |
| 2 |
②假设n=k时,成立,即
| 1 |
| 2 |
| 1 | ||
3
|
| 1 | ||
(k+1)
|
当n=k+1时,
| 1 |
| 2 |
| 1 | ||
3
|
| 1 | ||
(k+1)
|
| 1 | ||
(k+2)
|
由①②知,
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
点评:本题考查数列和不等式的综合,解题时要认真审题,注意挖掘题设中的隐含条件,注意数学归纳法的合理运用.
练习册系列答案
相关题目