题目内容
已知函数f(x)=2sinxcos(x+
)+
cos2x+
sin2x.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的最大值与最小值;
(3)写出函数f(x)的单调递增区间.
| π |
| 3 |
| 3 |
| 1 |
| 2 |
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的最大值与最小值;
(3)写出函数f(x)的单调递增区间.
f(x)=2sinxcos(x+
)+
cos2x+
sin2x
=2sinx(cosxcos
-sinxsin
)+
cos2x+
sin2x
=sinxcosx-
sin2x+
cos2x+
sin2x
=sin2x+
cos2x
=2sin(2x+
),
(1)因为T=
=π,所以f(x)的最小正周期为π;
(2)由-1≤sin(2x+
)≤1,得到-2≤f(x)≤2,
则函数f(x)的最大值为2,最小值为-2;
(3)令2kπ-
≤2x+
≤2kπ+
,
解得:kπ-
≤x≤kπ+
,
则f(x)的单调递增区间为:[kπ-
,kπ+
].
| π |
| 3 |
| 3 |
| 1 |
| 2 |
=2sinx(cosxcos
| π |
| 3 |
| π |
| 3 |
| 3 |
| 1 |
| 2 |
=sinxcosx-
| 3 |
| 3 |
| 1 |
| 2 |
=sin2x+
| 3 |
=2sin(2x+
| π |
| 3 |
(1)因为T=
| 2π |
| 2 |
(2)由-1≤sin(2x+
| π |
| 3 |
则函数f(x)的最大值为2,最小值为-2;
(3)令2kπ-
| π |
| 2 |
| π |
| 3 |
| π |
| 2 |
解得:kπ-
| 5π |
| 12 |
| π |
| 12 |
则f(x)的单调递增区间为:[kπ-
| 5π |
| 12 |
| π |
| 12 |
练习册系列答案
相关题目