题目内容
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
| 喜爱打篮球 | 不喜爱打篮球 | 合计 | |
| 男生 | 20 | 5 | 25 |
| 女生 | 10 | 15 | 25 |
| 合计 | 30 | 20 | 50 |
(2)在上述抽取的6人中选2人,求恰有一名女生的概率.
(3)为了研究喜欢打蓝球是否与性别有关,计算出K2≈8.333,你有多大的把握认为是否喜欢打蓝球与性别有关?下面的临界值表供参考:
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
解:(1)在喜欢打蓝球的学生中抽6人,则抽取比例为
∴男生应该抽取
人….(4分)
(2)在上述抽取的6名学生中,女生的有2人,男生4人.女生2人记A,B;男生4人为c,d,e,f,则从6名学生任取2名的所有情况为:(A,B)、(A,c)、(A,d)、(A,e)、(A,f)、(B,c)、(B,d)、(B,e)、(B,f)、(c,d)、(c,e)、(c,f)、(d,e)、(d,f)、(e,f)共15种情况,其中恰有1名女生情况有:(A,c)、(A,d)、(A,e)、(A,f)、(B,c)、(B,d)、(B,e)、(B,f),共8种情况,
故上述抽取的6人中选2人,恰有一名女生的概率概率为
.….(8分)
(3)∵K2≈8.333,且P(k2≥7.879)=0.005=0.5%,
那么,我们有99.5%的把握认为是否喜欢打蓝球是与性别有关系的….(12分)
分析:(1)根据分层抽样的方法,在喜欢打蓝球的学生中抽6人,先计算了抽取比例,再根据比例即可求出男生应该抽取人数.
(2)在上述抽取的6名学生中,女生的有2人,男生4人.女生2人记A,B;男生4人为c,d,e,f,列出其一切可能的结果组成的基本事件个数,通过列举得到满足条件事件数,求出概率.
(3)根据所给的公式,代入数据求出临界值,把求得的结果同临界值表进行比较,看出有多大的把握说明打篮球和性别有关系.
点评:本题是一个统计综合题,包含独立性检验和概率,本题通过创设情境激发学生学习数学的情感,帮助培养其严谨治学的态度.
∴男生应该抽取
(2)在上述抽取的6名学生中,女生的有2人,男生4人.女生2人记A,B;男生4人为c,d,e,f,则从6名学生任取2名的所有情况为:(A,B)、(A,c)、(A,d)、(A,e)、(A,f)、(B,c)、(B,d)、(B,e)、(B,f)、(c,d)、(c,e)、(c,f)、(d,e)、(d,f)、(e,f)共15种情况,其中恰有1名女生情况有:(A,c)、(A,d)、(A,e)、(A,f)、(B,c)、(B,d)、(B,e)、(B,f),共8种情况,
故上述抽取的6人中选2人,恰有一名女生的概率概率为
(3)∵K2≈8.333,且P(k2≥7.879)=0.005=0.5%,
那么,我们有99.5%的把握认为是否喜欢打蓝球是与性别有关系的….(12分)
分析:(1)根据分层抽样的方法,在喜欢打蓝球的学生中抽6人,先计算了抽取比例,再根据比例即可求出男生应该抽取人数.
(2)在上述抽取的6名学生中,女生的有2人,男生4人.女生2人记A,B;男生4人为c,d,e,f,列出其一切可能的结果组成的基本事件个数,通过列举得到满足条件事件数,求出概率.
(3)根据所给的公式,代入数据求出临界值,把求得的结果同临界值表进行比较,看出有多大的把握说明打篮球和性别有关系.
点评:本题是一个统计综合题,包含独立性检验和概率,本题通过创设情境激发学生学习数学的情感,帮助培养其严谨治学的态度.
练习册系列答案
相关题目
为了解某班学生喜爱打篮球是否与性别有关,对此班50人进行了问卷调查得到了如下的列联表:
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为
.
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)已知喜爱打篮球的10位女生中,A1,A2,A3,A4,A5还喜欢打羽毛球,B1,B2,B3还喜欢打乒乓球,C1,C2还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求B1和C1不全被选中的概率.
下面的临界值表供参考:
(参考公式:K2=
,其中n=a+b+c+d)
| 喜爱打篮球 | 不喜爱打篮球 | 合计 | |
| 男生 | 5 | ||
| 女生 | 10 | ||
| 合计 | 50 |
| 3 |
| 5 |
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)已知喜爱打篮球的10位女生中,A1,A2,A3,A4,A5还喜欢打羽毛球,B1,B2,B3还喜欢打乒乓球,C1,C2还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求B1和C1不全被选中的概率.
下面的临界值表供参考:
| p(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
| n(ad-bc)2 |
| (a+b)(c+d)(a+c)(b+d) |