题目内容

如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点,已知AB=2,AD=2
2
,PA=2,
求:(Ⅰ)三角形PCD的面积;
    (II)三棱锥P-ABE的体积.
精英家教网

精英家教网
(Ⅰ)∵PA⊥底面ABCD,∴PA⊥CD.
由矩形ABCD可得CD⊥AD,
又∵PA∩AD=A,
∴CD⊥平面PAD,∴CD⊥PD.
∴△PCD是一个直角三角形,PD=
22+(2
2
)2
=2
3

∴S△PCD=
1
2
×2×2
3
=2
3

( II)如图,设PB的中点为H,又E为PC的中点,由三角形的中位线定理,得EHBC,EH=
1
2
BC
=
2

由PA⊥底面ABCD,∴PA⊥BC.
由矩形ABCD得BC⊥AB.
又PA∩AB=A,∴BC⊥平面PAB.
所以HE为三棱锥P-ABE的高,因此可得VP-ABE=VE-PAB=
1
3
×
1
2
×2×2×
2
=
2
2
3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网