题目内容
(2012•淄博一模)已知数列{an}满足a1=1,且
=
,则a2012=( )
| an+1 |
| an |
| n+1 |
| n |
分析:
=
,考虑利用叠乘
•
…
=
×
…×
=
求得an,进而可求答案.
| an+1 |
| an |
| n+1 |
| n |
| a2 |
| a1 |
| a3 |
| a2 |
| an |
| an-1 |
| 2 |
| 1 |
| 3 |
| 2 |
| n |
| n-1 |
| an |
| a1 |
解答:解:∵
=
,a1=1
∴
•
…
=
×
…×
=
=n
∴an=na1=n,a2012=2012
故选C
| an+1 |
| an |
| n+1 |
| n |
∴
| a2 |
| a1 |
| a3 |
| a2 |
| an |
| an-1 |
| 2 |
| 1 |
| 3 |
| 2 |
| n |
| n-1 |
| an |
| a1 |
∴an=na1=n,a2012=2012
故选C
点评:本题主要考查了数列的递推式.解题的关键是从递推式中找到规律,进而利用叠乘求得数列的通项公式.
练习册系列答案
相关题目