题目内容
已知数列{an}的前n项和Sn=-an-(
)n-1+2(n为正整数).
(1)证明:an+1=
an+(
)n+1,并求数列{an}的通顶公式;
(2)若
=
,Tn=c1+c2+…+cn,求Tn.
| 1 |
| 2 |
(1)证明:an+1=
| 1 |
| 2 |
| 1 |
| 2 |
(2)若
| cn |
| n+1 |
| an |
| n |
分析:(1)根据数列{an}的前n项和Sn=-an-(
)n-1+2(n为正整数)利用an=
,能够an+1=
an+(
)n+1,并求数列{an}的通顶公式.
(2)由(1)可求出cn=(n+1)(
)n,再结合其表达式的特征知可用错位相减法求Tn.
| 1 |
| 2 |
|
| 1 |
| 2 |
| 1 |
| 2 |
(2)由(1)可求出cn=(n+1)(
| 1 |
| 2 |
解答:解:(1)∵数列{an}的前n项和Sn=-an-(
)n-1+2(n为正整数),
∴当n=1时,S1=a1=-a1-1+2,∴a1=
.
当n≥2时,Sn-1=-an-1-(
)n-2+2,
∴Sn-Sn-1=an=-an+an-1-(
)n-1+(
)n-2,
∴2an=an-1+(
)n-1,
∴2an+1=an+(
)n,
∴an+1=
an+(
)n+1.
设bn=2nan,
∴bn-bn-1=1,即当n≥2时bn-bn-1=1
又∵b1=2a1=1
∴数列{bn}是首项和公差均为1的等差数列.
∴bn=1+(n-1)×1=n=2nan,
∴an=
.
(2)∵
=
,
∴cn=
=(n+1)(
)n,
∴Tn=2×
+3×(
)2+4×(
)3+…+(n+1)(
)n,①
Tn=2×(
)2+3×(
)3+4×(
)4+…+(n+1)(
)n+1,②
由①-②得
Tn=1+(
)2+(
)3+…+(
)n-(n+1)(
)n+1=
-
,
∴Tn=3-
.
| 1 |
| 2 |
∴当n=1时,S1=a1=-a1-1+2,∴a1=
| 1 |
| 2 |
当n≥2时,Sn-1=-an-1-(
| 1 |
| 2 |
∴Sn-Sn-1=an=-an+an-1-(
| 1 |
| 2 |
| 1 |
| 2 |
∴2an=an-1+(
| 1 |
| 2 |
∴2an+1=an+(
| 1 |
| 2 |
∴an+1=
| 1 |
| 2 |
| 1 |
| 2 |
设bn=2nan,
∴bn-bn-1=1,即当n≥2时bn-bn-1=1
又∵b1=2a1=1
∴数列{bn}是首项和公差均为1的等差数列.
∴bn=1+(n-1)×1=n=2nan,
∴an=
| n |
| 2n |
(2)∵
| cn |
| n+1 |
| an |
| n |
∴cn=
| n+1 |
| n•an |
| 1 |
| 2 |
∴Tn=2×
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
由①-②得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| n+3 |
| 2n |
∴Tn=3-
| n+3 |
| 2n |
点评:本题主要考查了数列通项公式的求解和数列的求和,属常考题,较难.解题的关键是公式an=
,以及错位相减法求和的应用!
|
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |