题目内容
已知
<α<
,0<β<
,cos(
+α)=-
,sin(
+β)=
,求sin(α+β)的值.
| π |
| 4 |
| 3π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| 3 |
| 5 |
| 3π |
| 4 |
| 5 |
| 13 |
∵
<α<
,∴
<
+α<π.
又cos(
+α)=-
,∴sin(
+α)=
.
又∵0<β<
,∴
<
+β<π.
又sin(
+β)=
,∴cos(
+β)=-
,
∴sin(α+β)=-sin[π+(α+β)]=-sin[(
+α)+(
+β)]
=-[sin(
+α)cos(
+β)+cos(
+α)sin(
+β)]
=-[
×(-
)-
×
]=
.
所以sin(α+β)的值为:
.
| π |
| 4 |
| 3 π |
| 4 |
| π |
| 2 |
| π |
| 4 |
又cos(
| π |
| 4 |
| 3 |
| 5 |
| π |
| 4 |
| 4 |
| 5 |
又∵0<β<
| π |
| 4 |
| 3 π |
| 4 |
| 3 π |
| 4 |
又sin(
| 3 π |
| 4 |
| 5 |
| 13 |
| 3 π |
| 4 |
| 12 |
| 13 |
∴sin(α+β)=-sin[π+(α+β)]=-sin[(
| π |
| 4 |
| 3 π |
| 4 |
=-[sin(
| π |
| 4 |
| 3 π |
| 4 |
| π |
| 4 |
| 3 π |
| 4 |
=-[
| 4 |
| 5 |
| 12 |
| 13 |
| 3 |
| 5 |
| 5 |
| 13 |
| 63 |
| 65 |
所以sin(α+β)的值为:
| 63 |
| 65 |
练习册系列答案
相关题目