题目内容
13.| A. | $\frac{7}{5}$ | B. | $\frac{7}{4}$ | C. | $\frac{7}{3}$ | D. | $\frac{7}{2}$ |
分析 分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算并输出分段函数y=$\left\{\begin{array}{l}{\frac{b-1}{a}}&{a≤b}\\{\frac{a+1}{b}}&{a>b}\end{array}\right.$的函数值.
解答 解:分析程序中各变量、各语句的作用,
再根据流程图所示的顺序,可知:
该程序的作用是计算并输出分段函数y=$\left\{\begin{array}{l}{\frac{b-1}{a}}&{a≤b}\\{\frac{a+1}{b}}&{a>b}\end{array}\right.$的函数值.
∵a=$\frac{5}{2}$>b=2,
∴a?b=$\frac{5}{2}$?2=$\frac{7}{4}$,
故选:B.
点评 本题主要考查了选择结构,根据流程图分析出计算的类型是解题的关键,属于基础题.
练习册系列答案
相关题目
3.已知点A,B,C,P在同一平面内,且$\overrightarrow{PQ}$=$\frac{1}{3}$$\overrightarrow{PA}$,$\overrightarrow{QR}$=$\frac{1}{3}$$\overrightarrow{QB}$,$\overrightarrow{RP}$=$\frac{1}{3}$$\overrightarrow{RC}$,则△ABC与△PBC的面积之比是( )
| A. | 14:3 | B. | 19:4 | C. | 24:5 | D. | 29:6 |
5.函数f(x)=$\frac{1}{2}$x3+sinx+2x的定义域为R,数列{an}是公差为d的等差数列,且a1+a2+a3+a4+…a2015<0,记m=f(a1)+f(a2)+f(a3)+…f(a2015),关于实数m,下列说法正确的是( )
| A. | m恒为负数 | |
| B. | m恒为正数 | |
| C. | 当d>0时,m恒为正数;当d<0时,m恒为负数 | |
| D. | 当d>0时,m恒为负数;当d<0时,m恒为正数 |
2.在北方某城市随机选取一年内40天的空气污染指数(API)的监测数据,统计结果如下:
(Ⅰ)已知污染指数API大于250为重度污染,若本次抽取样本数据有9天是在供暖季,其中有3天为重度污染,完成下面的2×2列联表,问有多大把握认为该城市空气重度污染与供暖有关?
(Ⅱ)在样本中,从污染指数API大于250的6天中任取2天,求至少有1天API大于300的概率.
附注:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
| API | [0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,300] | (300,+∞) |
| 天数 | 3 | 5 | 8 | 10 | 8 | 4 | 2 |
| 非重度污染 | 重度污染 | 合计 | |
| 供暖季 | |||
| 非供暖季 | |||
| 合计 | 40 |
附注:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
| P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
| k | 1.323 | 2.072 | 2.706 | 3.841 | 5.025 | 6.635 | 7.879 | 10.828 |
3.设Sn是等差数列{an}的前n项和,若a1:a2=1:2,则S1:S3=( )
| A. | 1:3 | B. | 1:4 | C. | 1:5 | D. | 1:6 |