题目内容
已知数列{an}的通项为an,前n项的和为Sn,且有Sn=2-3an.
(1)求an;
(2)求数列{nan}的前n项和.
(1)求an;
(2)求数列{nan}的前n项和.
(1)n=1时,s1=2-3a1
∴a1=
当n≥2时3an=2-Sn①
3an-1=2-Sn-1②
①-②得 3(an-an-1)=-an,
∴4an=3an-1?
=
∵{an}是公比为
,首项为
的等比数列,an=
(
)n-1
(2)∵an=
(
)n-1=
•
(
)n-1=
•(
)n
Tn=
[1•(
)+2•(
)2+…+n•(
)n]①
Tn=
[1•(
)2+2•(
)3+…+n•(
)n+1]②
①-②得
Tn=
[1•(
)+(
)2+…+(
)n-n•(
)n+1]
∴Tn=
[
-n•(
)n+1]=8[1-(
)n]-
n•(
)n+1
=8-8(
)n-
n(
)n+1=8-(
)n[8+
n•
]=8-(
)n(8+2n)
∴a1=
| 1 |
| 2 |
当n≥2时3an=2-Sn①
3an-1=2-Sn-1②
①-②得 3(an-an-1)=-an,
∴4an=3an-1?
| an |
| an-1 |
| 3 |
| 4 |
∵{an}是公比为
| 3 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 4 |
(2)∵an=
| 1 |
| 2 |
| 3 |
| 4 |
| 2 |
| 3 |
| 3 |
| 4 |
| 3 |
| 4 |
| 2 |
| 3 |
| 3 |
| 4 |
Tn=
| 2 |
| 3 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 2 |
| 3 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
①-②得
| 1 |
| 4 |
| 2 |
| 3 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
∴Tn=
| 8 |
| 3 |
| ||||
1-
|
| 3 |
| 4 |
| 3 |
| 4 |
| 8 |
| 3 |
| 3 |
| 4 |
=8-8(
| 3 |
| 4 |
| 8 |
| 3 |
| 3 |
| 4 |
| 3 |
| 4 |
| 8 |
| 3 |
| 3 |
| 4 |
| 3 |
| 4 |
练习册系列答案
相关题目
已知数列{an}的通项为an=2n-1,Sn为数列{an}的前n项和,令bn=
,则数列{bn}的前n项和的取值范围为( )
| 1 |
| Sn+n |
A、[
| ||||
B、(
| ||||
C、[
| ||||
D、[
|