题目内容
已知函数f(x)=2sin(
x-
),x∈R
(1)求f(
)的值;
(2)设α,β∈[0,
],且α<β,f(2α+2π)=
,f(2β+π)=
,求sin(α-β)的值.
| 1 |
| 2 |
| π |
| 6 |
(1)求f(
| 4π |
| 3 |
(2)设α,β∈[0,
| π |
| 2 |
| 10 |
| 13 |
| 6 |
| 5 |
分析:(1)直接令x=
带入解析式求解即可
(2)角的变换为α-β=(α+
)-(β+
)-
,利用差角公式计算.注意开方时符号的确定.
| 4π |
| 3 |
(2)角的变换为α-β=(α+
| 5π |
| 6 |
| π |
| 3 |
| π |
| 2 |
解答:解:(1)f(
)=2------------------------------------(1分)
f(2α+2π)=2sin(α+
)=
,f(2β+π)=2sin(β+
)=
由α,β∈[0,
],得出
≤α+
≤
,所以cos(α+
)=-
≤β+
≤
,所以cos(β+
)=-±
因为α-β=(α+
)-(β+
)-
所以sin(α-β)=sin[(α+
)-(β+
)-
]=-cos[(α+
)-(β+
)]--------------------------------------------------(2分)
=-[cos(α+
)cos(β+
)+sin(α+
)sin(β+
)]---------------(1分)
当cos(β+
)=
时,sin(α-β)=
又因为-
≤α-β≤0,
所以sin(α-β)=
(舍去)-------------------------------------(1分)
当cos(β+
)=-
时,因为-
≤α-β≤0,sin(α-β)<0
所以sin(α-β)=-
-----------------------------------------------------------------------------------(1分)
(另外可以这样限角 由0≤β≤
有
≤β+
≤
又因为
<sin(β+
)=
<
在[0,
]内β+
∈[
,
]
所以应该β+
∈[
,
]所以cos(β+
)=-
)
| 4π |
| 3 |
f(2α+2π)=2sin(α+
| 5π |
| 6 |
| 5 |
| 13 |
| π |
| 3 |
| 6 |
| 5 |
由α,β∈[0,
| π |
| 2 |
| 5π |
| 6 |
| 5π |
| 6 |
| 4π |
| 3 |
| 5π |
| 6 |
| 12 |
| 13 |
| π |
| 3 |
| π |
| 3 |
| 5π |
| 6 |
| π |
| 3 |
| 4 |
| 5 |
因为α-β=(α+
| 5π |
| 6 |
| π |
| 3 |
| π |
| 2 |
所以sin(α-β)=sin[(α+
| 5π |
| 6 |
| π |
| 3 |
| π |
| 2 |
| 5π |
| 6 |
| π |
| 3 |
=-[cos(α+
| 5π |
| 6 |
| π |
| 3 |
| 5π |
| 6 |
| π |
| 3 |
当cos(β+
| π |
| 3 |
| 4 |
| 5 |
| 33 |
| 65 |
| π |
| 2 |
所以sin(α-β)=
| 33 |
| 65 |
当cos(β+
| π |
| 3 |
| 4 |
| 5 |
| π |
| 2 |
所以sin(α-β)=-
| 63 |
| 65 |
(另外可以这样限角 由0≤β≤
| π |
| 2 |
| π |
| 3 |
| π |
| 3 |
| 5π |
| 6 |
又因为
| 1 |
| 2 |
| π |
| 3 |
| 3 |
| 5 |
| ||
| 2 |
| π |
| 2 |
| π |
| 3 |
| π |
| 6 |
| π |
| 4 |
所以应该β+
| π |
| 3 |
| π |
| 2 |
| 5π |
| 6 |
| π |
| 3 |
| 4 |
| 5 |
点评:本题考查和差角三角函数公式的应用.易错点在于开方时符号的确定.
练习册系列答案
相关题目