题目内容
计算
xdx=
.
| ∫ | 2 1 |
| 3 |
| 2 |
| 3 |
| 2 |
分析:根据
x2的导数等于x,得到原函数是
x2,写出当自变量取两个不同的值时,对应的函数值,让两个数字相减得到结果.
| 1 |
| 2 |
| 1 |
| 2 |
解答:解:∫12xdx
=
x2
=
×22-
×12
=
.
故答案为:
.
=
| 1 |
| 2 |
| | | 2 1 |
=
| 1 |
| 2 |
| 1 |
| 2 |
=
| 3 |
| 2 |
故答案为:
| 3 |
| 2 |
点评:本题考查定积分,本题解题的关键是写出要积分的函数的原函数,本题是一个基础题,若出现一定是一个送分题目.
练习册系列答案
相关题目